gemeinsam neue Wege der Erkenntnis gehen
Eine freie Initiative von Menschen bei anthrowiki.at anthrowiki.at, anthro.world anthro.world, biodyn.wiki biodyn.wiki und steiner.wiki steiner.wiki
mit online Lesekreisen, Übungsgruppen, Vorträgen ...
Wie Sie die Entwicklung von AnthroWiki durch Ihre Spende unterstützen können, erfahren Sie hier.

Use Google Translate for a raw translation of our pages into more than 100 languages.
Please note that some mistranslations can occur due to machine translation.
Alle Banner auf einen Klick

Exzentrizität (Mathematik)

Aus AnthroWiki
(Weitergeleitet von Exzentrizität (Astronomie))
Ellipse mit Bezeichnungen
Hyperbel mit Bezeichnungen

Der Ausdruck Exzentrizität hat in der Mathematik zwei verwandte Bedeutungen im Zusammenhang mit nicht ausgearteten Kegelschnitten (Ellipsen, Hyperbeln, Parabeln):

Kreis, Ellipse, Parabel und Hyperbel mit numerischer Exzentrizität und gleichem Halbparameter (= Radius des Kreises)
  • Die lineare Exzentrizität ist bei einer Ellipse bzw. Hyperbel der Abstand eines Brennpunkts zum Mittelpunkt und wird mit bezeichnet (s. Bild). Sie hat die Dimension einer Länge. Da ein Kreis eine Ellipse mit zusammenfallenden Brennpunkten ist , gilt für den Kreis .
  • Die numerische Exzentrizität ist für Ellipsen und Hyperbeln das Verhältnis der linearen Exzentrizität zur großen Halbachse und damit eine dimensionslose Zahl.
Für eine Ellipse gilt . Im Fall ist die Ellipse ein Kreis.
Die numerische Exzentrizität beschreibt hier die mit wachsendem zunehmende Abweichung einer Ellipse von der Kreisform.
Für eine Hyperbel gilt . Mit wachsendem wird die Hyperbel immer offener, d. h., der Winkel zwischen den Asymptoten wächst. Gleichseitige Hyperbeln, also solche mit rechtwinkligen Asymptoten, ergeben sich für .
Für eine Parabel definiert man (zur Motivation s. unten).
Die Bedeutung der numerischen Exzentrizität ergibt sich aus dem Umstand, dass je zwei Ellipsen bzw. Hyperbeln genau dann ähnlich sind, wenn sie dieselbe numerische Exzentrizität aufweisen. Zwei Parabeln () sind immer ähnlich.

Bei Ellipsen und Hyperbeln wird der Abstand der Brennpunkte vom Mittelpunkt auch Brennweite genannt. Bei einer Parabel hingegen wird der Abstand des Brennpunkts vom Scheitel als Brennweite bezeichnet.

Astronomie

Rot: Elliptische Keplerbahn mit (numerischer) Exzentrizität 0,7
Grün: Parabolische Keplerbahn mit Exzentrizität 1
Blau: hyperbolische Keplerbahn mit Exzentrizität 1,3

In der Astronomie wird meist nur die numerische Exzentrizität verwendet und einfach Exzentrizität genannt, dabei aber abweichend von der Notation in der Mathematik oft mit bezeichnet.

Von den Planeten unseres Sonnensystems hat die Umlaufbahn der Venus die geringste Exzentrizität von 0,0068. Die Bahn der Erde hat eine Exzentrizität von 0,0167. Die größte Exzentrizität von 0,2056 hat die Merkurbahn.

Siehe auch

Literatur

  • Kleine Enzyklopädie Mathematik. Verlag Harri Deutsch, 1977, ISBN 3-87144-323-9, S. 192, 195, 328, 330.
  • Ayoub B. Ayoub: The Eccentricity of a Conic Section. In: The College Mathematics Journal, Vol. 34, No. 2 (März 2003), S. 116–121 (JSTOR).
  • Ilka Agricola, Thomas Friedrich: Elementary Geometry. AMS, 2008, ISBN 978-0-8218-9067-7, S. 63–70 (Auszug (Google)).
  • Hans-Jochen Bartsch: Taschenbuch mathematischer Formeln für Ingenieure und Naturwissenschaftler. Hanser, 2014, ISBN 978-3-446-43735-7, S. 287–289 (Auszug (Google)).
Dieser Artikel basiert auf einer für AnthroWiki adaptierten Fassung des Artikels Exzentrizität (Mathematik) aus der freien Enzyklopädie de.wikipedia.org und steht unter der Lizenz Creative Commons Attribution/Share Alike. In Wikipedia ist eine Liste der Autoren verfügbar.