Lorentz-Transformation: Unterschied zwischen den Versionen

Aus AnthroWiki
imported>Joachim Stiller
Keine Bearbeitungszusammenfassung
imported>Odyssee
Keine Bearbeitungszusammenfassung
Zeile 1: Zeile 1:
Die '''Lorentz-Transformation''', nach [[Hendrik Antoon Lorentz]], ist eine [[Koordinatentransformation]] in der Physik, um Phänomene in verschiedenen [[Bezugssystem]]en zu beschreiben. Sie verbindt in einer vierdimensionalen [[Raumzeit]] die Zeit- und Ortskoordinaten, mit denen verschiedene [[Beobachter (Physik)|Beobachter]] angeben, wann und wo Ereignisse stattfinden. Die Lorentz-Transformationen ist dei relativistische Verallgemeinerung der Galilei-Transformation und bilden daher die Grundlage der [[Spezielle Relativitätstheorie|Speziellen Relativitätstheorie]] von [[Albert Einstein]].
Die '''Lorentz-Transformation''', nach [[Hendrik Antoon Lorentz]], ist eine [[Koordinatentransformation]] in der Physik, um Phänomene in verschiedenen [[Bezugssystem]]en zu beschreiben. Sie verbindet in einer vierdimensionalen [[Raumzeit]] die Zeit- und Ortskoordinaten, mit denen verschiedene [[Beobachter (Physik)|Beobachter]] angeben, wann und wo Ereignisse stattfinden. Die Lorentz-Transformationen ist dei relativistische Verallgemeinerung der Galilei-Transformation und bilden daher die Grundlage der [[Spezielle Relativitätstheorie|Speziellen Relativitätstheorie]] von [[Albert Einstein]].


== Galilei-Transformation ==
== Galilei-Transformation ==

Version vom 13. Februar 2020, 11:42 Uhr

Die Lorentz-Transformation, nach Hendrik Antoon Lorentz, ist eine Koordinatentransformation in der Physik, um Phänomene in verschiedenen Bezugssystemen zu beschreiben. Sie verbindet in einer vierdimensionalen Raumzeit die Zeit- und Ortskoordinaten, mit denen verschiedene Beobachter angeben, wann und wo Ereignisse stattfinden. Die Lorentz-Transformationen ist dei relativistische Verallgemeinerung der Galilei-Transformation und bilden daher die Grundlage der Speziellen Relativitätstheorie von Albert Einstein.

Galilei-Transformation

Die Galileitransformation unterstellt eine unbegrenzte Lichtgeschwindigkeit und ist daher nur für Relativgeschwindigkeiten |v| < 0,1 c eine gute Näherung. Da v' = -v:

Galilei-Tranformation in -Richtung Inverse Galilei-Transformation

Lorentz-Transformation

Lorentz-Transformation in -Richtung Inverse Lorentz-Transformation

Literatur