Eine freie Initiative von Menschen bei anthrowiki.at, anthro.world, biodyn.wiki und steiner.wiki mit online Lesekreisen, Übungsgruppen, Vorträgen ... |
Wie Sie die Entwicklung von AnthroWiki durch Ihre Spende unterstützen können, erfahren Sie hier. |
Use Google Translate for a raw translation of our pages into more than 100 languages. Please note that some mistranslations can occur due to machine translation. |
Superpositionsprinzip
Mathematik
Das Superpositionsprinzip („Überlagerungsprinzip“; von lat. super „über“ und positio „Lage, Setzung, Stellung“) beschreibt in der Mathematik eine grundlegende Eigenschaft homogener linearer Gleichungen, nachdem auch jede Linearkombination ihrer Lösungen weitere gültige Lösungen liefert. Superpositionen erfüllen zwei einfache Bedingungen:
Additivität | |
Homogenität |
Eine Superposition („Überlagerung“) lässt sich daher in folgender allgemeiner Form darstellen:
Physik
In der Physik lässt sich das Superpositionsprinzip für die Überlagerung gleicher physikalischer Größen anwenden, die sich sich gegenseitig nicht stören, d.h. wenn sie mathematisch durch linearer Gleichungen bzw. lineare Differentialgleichungen beschrieben werden können.
Überlagerung von Kräften in der klassischen Mechanik
Ein einfaches Beispiel aus der klassischen Mechanik ist die ungestörte Überlagerung von mehreren Kräften zu einer resultierenden Gesamtkraft , die sich im einfachsten Fall von zwei wirkenden Kräften auch grafisch durch ein Kräfteparallelogramm veranschaulichen lässt:
Interferenz
Interferenzerscheinungen werden in der Physik durch die Überlagerung von Wellen (z.B. Schallwellen, Wasserwellen, elektromagnetische Wellen) beschrieben. Die resultierende Wellenfunktion ergibt sich dabei aus der Summe der überlagerten Wellen , d.h.:
Quantenphysik
Dieses Prinzip lässt sich auch in der Quantenmechanik anwenden, da Quantenzustände auch durch eine spezielle Wellenfunktion, die Schrödingergleichung, beschrieben werden können. In der von Paul Dirac eingeführten Bra-Ket-Notation lässt sich der resultiernde Gesamtzustand als Summe der orthonormierten Einzelzustände formal einfach wie folgt darstellen:
Die Betragsquadrate der komplexen Wahrscheinlichkeitsamplituden entsprechen nach der Bornschen Wahrscheinlichkeitsinterpretation der Wahrscheinlichkeit der jeweiligen Zustände.
Siehe auch
- Superposition (Mathematik) - Artikel in der deutschen Wikipedia
- Superposition (Physik) - Artikel in der deutschen Wikipedia