Reflexion (Physik)

Aus AnthroWiki
Reflexionsbecken sind seit der persischen Antike ein beliebtes städte- und gartenbauliches Gestaltungselement. Hier das weltgrößte Reflexionsbecken, errichtet 2006 in Bordeaux.

Reflexion (lat. reflexio, deutsch ‚Zurückbeugung‘, vom Verb reflectere, ‚zurückdrehen‘) bezeichnet in der Physik das Zurückwerfen von Wellen an einer Grenzfläche, an der sich der Wellenwiderstand oder der Brechungsindex des Ausbreitungsmediums ändert.

Bei glatten (also gegenüber der Wellenlänge kleinen Rauigkeitsstrukturen) Oberflächen gilt das Reflexionsgesetz, es liegt der Fall der gerichteten Reflexion vor. An rauen Oberflächen werden Wellen oder (je nach Betrachtungsweise) Strahlung diffus gestreut und in diesem Fall gilt näherungsweise das lambertsche Strahlungsgesetz.

In der Regel wird bei der Reflexion nur ein Teil der Energie der einfallenden Welle reflektiert, man spricht in diesem Zusammenhang auch von partieller Reflexion (teilweiser Reflexion). Der restliche Anteil der Welle breitet sich im zweiten Medium weiter aus (= Transmission), durch den geänderten Wellenwiderstand erfährt die Welle dabei eine Richtungs- (vgl. Brechung) und Geschwindigkeitsänderung. Der Brechungswinkel lässt sich mit dem snelliusschem Brechungsgesetz und die Amplituden der Reflexion und Transmission mit den fresnelschen Formeln berechnen – abhängig von Wellenwiderstand und Polarisation.

Ein Spezialfall der Reflexion ist die Totalreflexion, bei der die Welle beim Einfall auf ein Medium mit niedrigerem Wellenwiderstand vollständig an der Grenzfläche reflektiert wird. Genau betrachtet tritt dies nur bei ideal transparenten Medien auf. Ist beispielsweise das zweite Medium in einem bestimmten Frequenzbereich absorbierend, kommt es zur sogenannten abgeschwächten Totalreflexion, bei der sich das Reflexionsverhalten in diesem Bereich ändert. Angewendet wird die Totalreflexion beispielsweise bei der Retroreflexion (Reflexion einer Welle in Richtung der Quelle).

Eindimensionaler Spezialfall

Teilweise Reflexion und Transmission einer eindimensionalen Welle an einer Grenzfläche.

Wenn der Wellenträger die Ausbreitung der Welle nur in einer Raumrichtung zulässt, spricht man von einer eindimensionalen Welle. Beispiele wären Seilwellen, Schallwellen in engen Röhren (siehe Kundtsches Rohr), elektromagnetische Wellen in Wellenleitern usw. Am Ende eines solchen Wellenträgers kommt es zur Reflexion. Die einlaufende Welle und die gegenläufige reflektierte Welle überlagern sich. Setzt man idealisierend voraus, dass es zu keinem Energieverlust kommt (keine Dämpfung, vollständige Reflexion), so sind die Amplituden der einlaufenden und der auslaufenden Welle gleich. Es bilden sich stehende Wellen aus. Dabei unterscheidet man die Reflexion „am festen Ende“ und „am losen Ende“:

  • Am festen Ende ist die Auslenkung der Welle zu jedem Zeitpunkt gleich Null. Die einlaufende und die reflektierte Welle weisen also hier einen Phasenunterschied von π auf, d. h., sie sind gegenphasig und interferieren destruktiv. Am festen Ende entsteht dadurch ein Knoten. Weitere Schwingungsknoten befinden sich jeweils im Abstand halber Wellenlängen. Die Schwingungsbäuche liegen jeweils dazwischen.
  • Am losen Ende ist die Auslenkung der Welle maximal. Die einlaufende und die reflektierte Welle weisen keinen Phasenunterschied auf, d. h., sie sind gleichphasig und interferieren konstruktiv. Am losen Ende entsteht dadurch ein Bauch. Weitere Schwingungsbäuche befinden sich im Abstand halber Wellenlänge. Die Schwingungsknoten liegen jeweils dazwischen.

Ob ein Ende fest oder lose ist, hängt davon ab, welche Amplitudengröße man für die Beschreibung der Welle nutzt. So stellt z. B. ein offenes Rohrende für eine Schallwelle ein festes Ende dar, wenn man über den Schalldruck spricht, während sie ein loses Ende für die Schallschnelle ist. Schallschnelle und Schalldruck sind dabei um π/2 phasenverschoben. Findet Reflexion an beiden Enden des Wellenträgers statt, so kann es nur dann zu zeitlich unveränderlichen stehenden Wellen kommen, wenn eine Resonanzbedingung erfüllt ist:

  • Hat der Wellenträger zwei feste oder zwei lose Enden, so tritt Resonanz auf, wenn die Länge des Wellenträgers ein ganzzahliges Vielfaches der halben Wellenlänge ist:
  • Ist das eine Ende des Wellenträgers fest und das andere lose, so lautet die Resonanzbedingung:

Die auf diese Weise erzeugten stehenden Wellen nutzt man bei vielen Musikinstrumenten aus. So ist beispielsweise eine Gitarrensaite ein eindimensionaler Wellenträger mit zwei festen Enden. Zupft man sie an, so schwingt die Saite in den Frequenzen, die die Resonanzbedingung erfüllen. Für erhält man die Frequenz des Grundtons. Alle anderen Frequenzen ergeben das Obertonspektrum.

Reflexion einzelner Impulse

Bei einem Medium ohne Dispersion pendelt ein Impuls zwischen zwei Reflektoren im Abstand A

Ein Impuls beliebiger Kurvenform ist ein Wellenpaket, das nach den Regeln der Fourieranalyse in eine Summe von Sinusschwingungen unterschiedlicher Wellenlänge λ zerlegt werden kann. Zwischen zwei Reflektoren im Abstand A sind nur solche erlaubt, für die gilt:

wobei n eine natürliche Zahl ist. Unter bestimmten Voraussetzungen bleibt die Kurvenform des daraus zusammengesetzten Impulses gleich und dieses Soliton kann ungedämpft zwischen den beiden Reflektoren pendeln, wie im Bild zu sehen ist. Durch Vergleich dieser Pendeldauer mit den exakten Zeitmarken einer Atomuhr kann man extrem hohe Frequenzen bestimmen (Frequenzkamm).

Reflexionsgesetz

Strahlung trifft von links oben auf eine reflektierende Fläche.

Das Reflexionsgesetz besagt, dass der Ausfallswinkel (auch Reflexionswinkel) genau so groß wie der Einfallswinkel ist, , und beide mit dem Lot in einer Ebene, der Einfallsebene, liegen. Im Fall von Wellen muss dabei die Wellenlänge erheblich größer sein als die Abstände zwischen den Streuzentren (beispielsweise Atome). Andernfalls kann es zur Ausbildung mehrerer „Reflexionsstrahlen“ kommen,[1] beispielsweise bei Röntgenstrahlen, die an einem Kristall reflektiert werden (siehe Röntgenbeugung).

Bildfolge der Elementarwellen nach Huygens und Fresnel

Das Reflexionsgesetz kann mithilfe des huygensschen Prinzips hergeleitet werden (vgl. nebenstehende Abbildung): Im ersten und zweiten Bild sieht man, wie eine Wellenfront schräg auf eine spiegelnde Oberfläche trifft und dabei kreisförmige Elementarwellen um die jeweiligen Auftreffpunkte erzeugt. Die Radien dieser Wellen wachsen mit der Phasengeschwindigkeit der Welle im betreffenden Medium an. In den folgenden Bildern ist dargestellt, wie sich die entstandenen Elementarwellen zu einer neuen Wellenfront überlagern, die nach rechts oben läuft. Die Winkel zwischen den einlaufenden und auslaufenden Wellenfronten und Ebene sind (spiegelverkehrt) gleich. Dies besagt das Reflexionsgesetz.

Eine andere Herleitung macht sich das fermatsche Prinzip zunutze: Der Lichtweg vom Punkt A zum Punkt B ist dann extremal (genauer gesagt: minimal), wenn die Reflexion genau so erfolgt, dass Einfalls- und Ausfallswinkel gleich groß sind.

Gerichtete Reflexion

Reflexion eines Lichtstrahls an einer spiegelnden Oberfläche.

Das Wellenfeld an einer gerichtet reflektierenden Fläche lässt sich durch „Spiegelquellen“ beschreiben. Zu jeder Originalquelle wird hierbei eine Spiegelquelle hinter der reflektierenden Fläche „angebracht“, mit dem gleichen Abstand zur reflektierenden Fläche wie die Originalquelle. Das Wellenfeld ergibt sich durch Überlagerung der Wellenfelder von Original- und Spiegelquellen.

Anwendungen findet die gerichtete Reflexion in ebenen und nicht ebenen Spiegeln, beispielsweise konkav gekrümmte Hohlspiegel als Rasierspiegel oder bei Spiegelteleskopen. Konvex gekrümmte Spiegel werden als Außenspiegel an Kraftfahrzeugen eingesetzt.

Diffuse Reflexion

Diffuse Reflexion

Grenzflächen mit einer großen Rauheit relativ zur Wellenlänge reflektieren diffus. Enthält das Material viele Streuzentren, folgt die Reflexion dem lambertschen Gesetz. Die Hauptrückstreuung erfolgt dann senkrecht zum Material, unabhängig von der Einstrahlungsrichtung. Beispiele sind Milch, Wandfarbe oder Papier. Bei Milch haben die Fetttropfen im Wasser die Größenordnung der Wellenlänge des sichtbaren Lichtes und bilden die Streuzentren für Lichtwellen, gleiches gilt für die Lufteinschlüsse zwischen den Fasern bei Papier.

Anwendungen diffuser Reflexion, also der gleichmäßigen Verteilung von Licht, sind

  • Ulbricht-Kugel,
  • Projektionsschirm,
  • Vermeidung spiegelnder Reflexe an Bildschirmen und fotografischen Abzügen.

Die Summe spiegelnder und diffuser Reflexion wird auch Remission genannt, bezogen auf die eingestrahlte Lichtmenge Remissionsgrad. Für nicht perfekt diffus streuende, gekrümmte und womöglich farbstichige Oberflächen gibt es unterschiedliche Möglichkeiten der Definition. In der Meteorologie gibt die Albedo den Anteil des Sonnenlichts an, der von der Erdoberfläche, oder von Wolken diffus reflektiert wird. Die Albedo von anderen nicht selbst leuchtenden Himmelskörpern geht in der Astronomie in die Helligkeit ein, mit der dieser Himmelskörper von der Erde aus zu sehen ist.

In der Industrie sind verschiedene Definitionen des Weißgrads üblich. Einige Definitionen berücksichtigen unter anderem, dass das menschliche Auge für manche Wellenlängen empfindlicher ist als für andere.

Bewegte Spiegelfläche

Das Reflexionsgesetz α=β gilt nur im Ruhesystem der Spiegelfläche. Betrachtet man jedoch einen bewegten Spiegel, dann ergibt sich aus der Impulserhaltung[2], dass sich die Wellenlänge des Lichtes sowie der Reflexionswinkel verändern. Dies steht im Einklang mit der speziellen Relativitätstheorie, nach der auch noch die Lorentzkontraktion einer schräg zur Bewegung gerichteten Spiegelfläche zu berücksichtigen ist.

Die Konstruktion des Lichtweges kann grundsätzlich auch nach dem huygensschen Prinzip erfolgen, wobei die dynamisch bewegte effektive Spiegelfläche zu berücksichtigen ist. Allgemein formuliert ergibt sich folgender Ausfallswinkel β:

Siehe auch

Weblinks

Commons: Reflexion - Weitere Bilder oder Audiodateien zum Thema

Optik

Einzelnachweise

  1.  Eugene Hecht: Optik. Oldenbourg Wissenschaftsverlag, 2005, ISBN 3-486-27359-0, S. 168ff.
  2.  Aleksandar Gjurchinovski: Reflection from a moving mirror—a simple derivation using the photon model of light. In: European Journal of Physics. 34, Nr. 1, 2012, S. L1–L4, doi:10.1088/0143-0807/34/1/L1.
Dieser Artikel basiert (teilweise) auf dem Artikel Reflexion (Physik) aus der freien Enzyklopädie Wikipedia und steht unter der Lizenz Creative Commons Attribution/Share Alike. In Wikipedia ist eine Liste der Autoren verfügbar.