gemeinsam neue Wege der Erkenntnis gehen
Eine freie Initiative von Menschen bei anthrowiki.at anthrowiki.at, anthro.world anthro.world, biodyn.wiki biodyn.wiki und steiner.wiki steiner.wiki
mit online Lesekreisen, Übungsgruppen, Vorträgen ...
Wie Sie die Entwicklung von AnthroWiki durch Ihre Spende unterstützen können, erfahren Sie hier.

Use Google Translate for a raw translation of our pages into more than 100 languages.
Please note that some mistranslations can occur due to machine translation.

Ellipse (Mathematik)

Aus AnthroWiki
Version vom 30. Juni 2023, 13:34 Uhr von Joachim Stiller (Diskussion | Beiträge) (→‎Einzelnachweise)
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Ellipse mit Mittelpunkt , Brennpunkten und , Scheitelpunkten , Hauptachse (rot) und Nebenachse (grün)
Eine Ellipse (rot) als Schnitt einer geneigten Ebene mit einem Kegel

Ellipsen sind in der Geometrie spezielle geschlossene ovale Kurven. Sie zählen neben den Parabeln und den Hyperbeln zu den Kegelschnitten. Eine anschauliche Definition ist die Definition der Ellipse als Punktmenge.

Als Halbachsen werden die beiden charakteristischen Radien einer Ellipse bezeichnet:

  • Die große Halbachse ist die halbe Länge des größten Durchmessers einer Ellipse, der auch Hauptachse genannt wird.
  • Die kleine Halbachse ist die Hälfte des kürzesten Durchmessers (Nebenachse) und steht genau im Winkel von 90° zur großen Halbachse.

In der Natur treten Ellipsen in Form von ungestörten keplerschen Planetenbahnen um die Sonne auf; die Halbachsen werden hier auch als Bahnachsen bezeichnet. Die große Halbachse ist eines der sechs sogenannten Bahnelemente und wird oft auch ungenau als „mittlere Entfernung“ angegeben und meistens mit a abgekürzt.

Auch beim Zeichnen von Schrägbildern werden häufig Ellipsen benötigt, da ein Kreis durch eine Parallelprojektion im Allgemeinen auf eine Ellipse abgebildet wird.

Die Ellipse (von griechisch ἔλλειψις élleipsis ‚Mangel‘) wurde von Apollonios von Perge (etwa 262–190 v. Chr.)[1] eingeführt und benannt, die Bezeichnung bezieht sich auf die Exzentrizität .[2]

Siehe auch

Literatur

  • C. Leopold: Geometrische Grundlagen der Architekturdarstellung. Verlag W. Kohlhammer, Stuttgart 2005, ISBN 3-17-018489-X, S. 55–66.
  • Peter Proff: Die Deutung der Begriffe „Ellipse“, „Parabel“ und „Hyperbel“ nach Apollonios v. Perge. In: „Gelêrter der arzeniê, ouch apotêker“. Beiträge zur Wissenschaftsgeschichte. Festschrift zum 70. Geburtstag von Willem F. Daems. Hrsg. von Gundolf Keil, Horst Wellm Verlag, Pattensen/Hannover 1982 (= Würzburger medizinhistorische Forschungen, 24), ISBN 3-921456-35-5, S. 17–34.

Einzelnachweise

  1. Peter Proff: Die Deutung der Begriffe „Ellipse“, „Parabel“ und „Hyperbel“ nach Apollonios v. Perge. In: „gelêrter der arzeniê, ouch apotêker“. Beiträge zur Wissenschaftsgeschichte. Festschrift zum 70. Geburtstag von Willem F. Daems. Hrsg. von Gundolf Keil, Horst Wellm Verlag, Pattensen/Hannover 1982 (= Würzburger medizinhistorische Forschungen, 24), ISBN 3-921456-35-5, S. 17–34; hier S. 17.
  2. I. N. Bronstein, K. A. Semendjajew (Begründer), Günter Grosche (Bearb.), Eberhard Zeidler (Hrsg.): Teubner-Taschenbuch der Mathematik. Teubner, Stuttgart 1996, ISBN 3-8154-2001-6, S. 24.
Dieser Artikel basiert auf einer für AnthroWiki adaptierten Fassung des Artikels Ellipse aus der freien Enzyklopädie de.wikipedia.org und steht unter der Lizenz Creative Commons Attribution/Share Alike. In Wikipedia ist eine Liste der Autoren verfügbar.