Menge: Unterschied zwischen den Versionen

Aus AnthroWiki
imported>Odyssee
imported>Odyssee
Zeile 11: Zeile 11:


Vereinbarungsgemäß werden die Elemente einer Menge entweder explizit oder durch eine geeignete Definition innerhalb geschwungener Klammern angegeben, z.B. für die abzählbar unendliche Menge der [[Natürliche Zahl|natürlichen Zahlen]] <math>\mathbb{N} = \{1; 2; 3; \ldots\}</math>. Eine Menge, die keine Elemente enthält, wird als [[leere Menge]] <math>\emptyset</math> oder auch <math>\{\}</math> bezeichnet. Wird bei einer Menge auch die Reihenfolge der Elemente berücksichtigt, spricht man von einer [[Folge (Mathematik)|Folge]].
Vereinbarungsgemäß werden die Elemente einer Menge entweder explizit oder durch eine geeignete Definition innerhalb geschwungener Klammern angegeben, z.B. für die abzählbar unendliche Menge der [[Natürliche Zahl|natürlichen Zahlen]] <math>\mathbb{N} = \{1; 2; 3; \ldots\}</math>. Eine Menge, die keine Elemente enthält, wird als [[leere Menge]] <math>\emptyset</math> oder auch <math>\{\}</math> bezeichnet. Wird bei einer Menge auch die Reihenfolge der Elemente berücksichtigt, spricht man von einer [[Folge (Mathematik)|Folge]].
=== Grundmenge ===
Die '''Grundmenge''', die auch als '''Universum''' bezeichnet wird, umfasst die Menge aller im gegebenen Zusammenhang betrachteten Elemente und ist damit die Basis für alle weiteren Überlegungen.


=== Teilmenge ===
=== Teilmenge ===

Version vom 20. Juni 2019, 10:25 Uhr

Eine Menge von Polygonen
A ist eine (echte) Teilmenge von B.

Die Menge (von mhd. manic „viel“) fasst eine endliche oder unendliche Anzahl beliebiger, wohlunterschiedener Elemente zu einer Gesamtheit zusammen und ist heute eines der grundlegendsten Konzepte der Mathematik.

Grundlagen

Die Mengenlehre wurde in der Zeit von 1874 bis 1897 von Georg Cantor (1845-1918) begründet. Er definierte den Begriff „Menge“ wie folgt:

„Unter einer „Menge“ verstehen wir jede Zusammenfassung M von bestimmten wohlunterschiedenen Objekten m unserer Anschauung oder unseres Denkens (welche die „Elemente“ von M genannt werden) zu einem Ganzen.“

Georg Cantor[1]

Vereinbarungsgemäß werden die Elemente einer Menge entweder explizit oder durch eine geeignete Definition innerhalb geschwungener Klammern angegeben, z.B. für die abzählbar unendliche Menge der natürlichen Zahlen . Eine Menge, die keine Elemente enthält, wird als leere Menge oder auch Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \{\}} bezeichnet. Wird bei einer Menge auch die Reihenfolge der Elemente berücksichtigt, spricht man von einer Folge.

Grundmenge

Die Grundmenge, die auch als Universum bezeichnet wird, umfasst die Menge aller im gegebenen Zusammenhang betrachteten Elemente und ist damit die Basis für alle weiteren Überlegungen.

Teilmenge

Cantor prägte auch den Begriff der Teilmenge oder Untermenge. ist eine Untermenge (Teilmenge) von und ist eine Obermenge von , wenn jedes Element von auch in enthalten ist:

Enthält Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle B} zudem weitere Elemente, die nicht in enthalten sind, so ist Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A} eine echte Teilmenge von und ist eine echte Obermenge von .

Die Menge aller Teilmengen einer gegebenen Grundmenge wird als Potenzmenge bezeichnet.

Differenzmenge und Komplementärmenge

Die Differenzmenge zweier Mengen und ist die Menge aller Elemente, die in , aber nicht in enthalten sind, d.h.:

Gilt dabei , so wird die Differenzmenge auch als Komplementärmenge von in oder kurz als Komplement bezeichnet.

Mächtigkeit

Die Mächtigkeit oder Kardinalität einer Menge wird durch die Kardinalzahl angegeben. Für endliche Menge ist sie gleich der Anzahl ihrer Elemente. Unendliche Mengen können unterschiedliche Mächtigkeiten haben, die durch den hebräischen Buchstaben und einen Index bezeichnet werden. Für die abzählbar unendliche Menge der natürlichen Zahlen, die unter den unendlichen Mengen die geringste Mächtigkeit haben, schreibt man entsprechend . Die überabzählbare unendliche Menge der reellen Zahlen hat unter Annahme der Kontinuumshypothese[2] die Mächtigkeit , andernfalls gilt zumindest .

Punktmenge

In der Geometrie werden verschieden dimensionale Räume, wie die eindimensionale Linie, die zweidimensionale Ebene oder der dreidimensionale Raum, traditionell als Punktmengen bezeichnet.

Offene Menge und abgeschlossene Menge

Eine offene Menge enthält keine Randelemente. Die Elemente einer offenen Menge sind daher nur von Elementen dieser Menge und von keinen äußeren Elementen umgeben, d.h.:

gibt es eine reelle Zahl , sodass jeder Punkt Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle y} des -dimensionalen euklidischen Raums , dessen Abstand zu kleiner ist als , in Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle U} liegt.

Andernfalls handelt es sich um eine abgeschlossene Menge.

Disjunkte Mengen

Zwei disjunkte Mengen

Zwei Mengen und heißen disjunkt, wenn sie kein gemeinsames Element besitzen, d.h. wenn ihre Schnittmenge leer ist:

So sind beispielsweise die Mengen und disjunkt, da sie kein gemeinsames Element haben. Die Mengen und sind hingegen nicht disjunkt, da sie das Element gemeinsam haben.

Mehrere Mengen sind paarweise disjunkt, wenn beliebige Paare von ihnen disjunkt sind.

Einzelnachweise

  1. Georg Cantor: Beiträge zur Begründung der transfiniten Mengenlehre. In: Mathematische Annalen 46 (1895), S. 481. Online.
  2. Die Kontinuumshypothese besagt, dass es keine Menge gibt, deren Mächtigkeit zwischen der Mächtigkeit der natürlichen Zahlen und der Mächtigkeit der reellen Zahlen liegt. Diese Hypothese hat sich aber als unentscheidbar erwiesen.