Eine freie Initiative von Menschen bei ![]() ![]() ![]() ![]() mit online Lesekreisen, Übungsgruppen, Vorträgen ... |
![]() |
Use Google Translate for a raw translation of our pages into more than 100 languages. Please note that some mistranslations can occur due to machine translation. |
Raumzeit: Unterschied zwischen den Versionen
imported>Joachim Stiller |
imported>Joachim Stiller Keine Bearbeitungszusammenfassung |
||
Zeile 1: | Zeile 1: | ||
Als '''Raumzeit''' oder '''Raum-Zeit-Kontinuum''' bezeichnet man die in der [[Relativitätstheorie]] verwendete Darstellung von [[Raum]] und [[Zeit]] in einem gemeinsamen [[vierdimensional]]en [[Raum (Mathematik)|mathematischen Raum]], dem nach [[Wikipedia:Hermann Minkowski|Hermann Minkowski]] benannten '''Minkowski-Raum'''. Damit wird der Tatsache Rechnung getragen, dass bei Geschwindigkeiten nahe der [[Lichtgeschwindigkeit]] Raum- und Zeitkoordinaten einander wechselseitig bedingen und ineinander übergehen können. In der für kleine Geschwindigkeiten mit guter Näherung gültigen [[klassische Physik|klassischen Physik]] sind die Raum- und Zeitkoordinaten hingegen unabhängig voneinander. | Als '''Raumzeit''' oder '''Raum-Zeit-Kontinuum''' bezeichnet man die in der [[Relativitätstheorie]] verwendete Darstellung von [[Raum]] und [[Zeit]] in einem gemeinsamen [[vierdimensional]]en [[Raum (Mathematik)|mathematischen Raum]], dem nach [[Wikipedia:Hermann Minkowski|Hermann Minkowski]] benannten '''Minkowski-Raum'''. Damit wird der Tatsache Rechnung getragen, dass bei Geschwindigkeiten nahe der [[Lichtgeschwindigkeit]] Raum- und Zeitkoordinaten einander wechselseitig bedingen und ineinander übergehen können. In der für kleine Geschwindigkeiten mit guter Näherung gültigen [[klassische Physik|klassischen Physik]] sind die Raum- und Zeitkoordinaten hingegen unabhängig voneinander. | ||
Lorentz-Gruppe: | |||
:<math>O(1,3) := \{\Lambda\in\mathbb R^{4\times 4}\mid \forall x,y\in\mathbb R^4\colon \langle\Lambda x,\Lambda y\rangle = \langle x,y\rangle\}.</math> | |||
Die Lorentz-Gruppe ist die Gruppe aller Lorentz-Transformationen. | |||
Die Lorentz-Transformationen sind Isometrien: | |||
:<math>\forall \Lambda\in O(1,3)\colon\;q(\Lambda x-\Lambda y)=q(x-y)</math>. | |||
Aus der Definition folgt <math>q(x')=q(x)</math> mit <math>x':=\Lambda x</math>. Ausgeschrieben: | |||
:<math>c^2 \cdot t'^2 - x'^2 - y'^2 - z'^2 = c^2 \cdot t^2 - x^2 - y^2 - z^2</math> | |||
bzw. | |||
:<math>x'^2 + y'^2 + z'^2 - c^2 \cdot t'^2 = x^2 + y^2 + z^2 - c^2 \cdot t^2</math> | |||
bzw. (unter Verwendung der imaginären Einheit) | |||
:<math>x'^2 + y'^2 + z'^2 + \mathrm i^2 \cdot c^2 \cdot t'^2 = x^2 + y^2 + z^2 + \mathrm i^2 \cdot c^2 \cdot t^2.</math> | |||
== Siehe auch == | == Siehe auch == |
Version vom 6. Februar 2020, 19:12 Uhr
Als Raumzeit oder Raum-Zeit-Kontinuum bezeichnet man die in der Relativitätstheorie verwendete Darstellung von Raum und Zeit in einem gemeinsamen vierdimensionalen mathematischen Raum, dem nach Hermann Minkowski benannten Minkowski-Raum. Damit wird der Tatsache Rechnung getragen, dass bei Geschwindigkeiten nahe der Lichtgeschwindigkeit Raum- und Zeitkoordinaten einander wechselseitig bedingen und ineinander übergehen können. In der für kleine Geschwindigkeiten mit guter Näherung gültigen klassischen Physik sind die Raum- und Zeitkoordinaten hingegen unabhängig voneinander.
Lorentz-Gruppe:
Die Lorentz-Gruppe ist die Gruppe aller Lorentz-Transformationen.
Die Lorentz-Transformationen sind Isometrien:
- .
Aus der Definition folgt mit . Ausgeschrieben:
bzw.
bzw. (unter Verwendung der imaginären Einheit)