Eine freie Initiative von Menschen bei anthrowiki.at, anthro.world, biodyn.wiki und steiner.wiki mit online Lesekreisen, Übungsgruppen, Vorträgen ... |
Wie Sie die Entwicklung von AnthroWiki durch Ihre Spende unterstützen können, erfahren Sie hier. |
Use Google Translate for a raw translation of our pages into more than 100 languages. Please note that some mistranslations can occur due to machine translation. |
Reihe (Mathematik)
Eine unendliche Reihe ist mathematisch definiert als Folge der Partialsummen einer anderen Folge :
Für eine beliebige Folge ist die -te Partialsumme ist die Summe ihrer ersten Glieder:
Konvergenz
Falls die Reihe, d.h. die Folge der Partialsummen, konvergiert, so ist ihr Grenzwert die Summe oder der Wert der Reihe:
Eine Reihe ist genau dann absolut konvergent, wenn die Reihe ihrer Absolutbeträge konvergiert.
Konvergente Reihen können gliedweise addiert, subtrahiert oder mit einem konstanten Faktor multipliziert werden. Absolut konvergierende Reihen können auch gliedweise miteinander multipliziert werden. Die resultierende Reihe ist dann ebenfalls konvergent.
Beispiele
Arithmetische Reihe
Eine arithmetische Reihe ist die Reihe einer arithmetischen Folge. Die Summe einer endlichen arithmetischen Reihe ergibt auf einfache Weise aus dem arithmetischen Mittel des ersten und des letzten Gliedes:
Geometrische Reihe
Eine geometrische Reihe ist die Reihe einer geometrischen Folge. Für eine konvergente geometrische Reihe mit und folglich ergibt sich dann:
Wobei sich die angegebene Formel für die n-te Partialsumme wie folgt herleiten lässt:
Durch Subtraktion der zweiten Gleichung von der ersten und nachfolgender Division durch ergibt sich:
Für den Grenzwert, d.h. für die Summe der unendlichen Reihe folgt daraus:
- Beispiel
So hat z.B. die Reihe mit und den Grenzwert
Potenzreihe
Eine Potenzreihe einer beliebigen Folge mit dem Entwicklungspunkt hat die allgemeine Form
Potenzreihen werden häufig dazu verwendet, um Funktionen, die nicht durch elementare mathematische Operationen berechnet werden können (z.B. die Sinusfunktion), durch Reihenentwicklung als unendliche Summe von Potenzen darzustellen, z.B. in Form einer Taylorreihe.
Ihr Konvergenzradius kann mit der Definition und nach der klassischen Formel von Cauchy-Hadamard berechnet werden:
Oft ist auch eine einfachere Berechnung möglich, sofern der folgende Limes existiert:
Fourierreihe
Mittels einer Fourierreihe, benannt nach Joseph Fourier (1768–1830), lassen sich periodische, abschnittsweise stetige Funktionen durch eine Reihenentwicklung mit Sinus- und Kosinusfunktionen darstellen. Die Koeffizienten werden durch Fourier-Analyse bestimmt.
Siehe auch
- Reihe (Mathematik) - Artikel in der deutschen Wikipedia