Konforme Abbildung

Aus AnthroWiki
(Weitergeleitet von Konforme Transformation)
Ein rechtwinkliges Netz und sein Bild (unten) nach einer konformen Abbildung . Linienpaare, die sich unter 90° schneiden, werden abgebildet auf Linienpaare, die sich ebenfalls unter 90° schneiden.

Eine konforme Abbildung ist eine winkeltreue Abbildung.

Das bedeutet, dass aus einem rechtwinkligen Koordinatennetz durch eine konforme Abbildung zwar ein im Allgemeinen krummliniges Koordinatennetz entsteht, dass aber „im Kleinen“ die rechtwinklige Netzstruktur vollständig erhalten bleibt, also insbesondere die Zwischenwinkel und die Längenverhältnisse je zweier beliebiger Vektoren.

Solche Abbildungen finden vielfache Anwendungen in der theoretischen Physik, u. a. in der Theorie komplizierter elektrostatischer Potentiale und der zugehörigen elektrostatischen Felder sowie in der Strömungsmechanik.

Definition

Eine lineare Abbildung heißt konform, wenn

für alle gilt und ihre Determinante positiv ist. (Ist sie negativ, so heißt sie anti-konform). Hierbei ist das Standardskalarprodukt und die euklidische Norm. Mit anderen Worten erhalten (lineare) konforme oder anti-konforme Abbildungen den Betrag des Winkels zwischen zwei beliebigen Vektoren; während eine konforme die Orientierung des Winkels erhält, kehrt sie eine anti-konforme um.

Des Weiteren heißt eine differenzierbare Abbildung konform in , wenn ihr Differential in konform ist.

Siehe auch

Literatur

Weblinks

Commons: Conformal mapping – Weitere Bilder oder Audiodateien zum Thema

Einzelnachweise

Dieser Artikel basiert auf einer für AnthroWiki adaptierten Fassung des Artikels Konforme Abbildung aus der freien Enzyklopädie de.wikipedia.org und steht unter der Lizenz Creative Commons Attribution/Share Alike. In Wikipedia ist eine Liste der Autoren verfügbar.